Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20226, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980374

RESUMO

The anaerobic region of the gastrointestinal (GI) tract has been replicated in the anaerobic chamber of a microbial fuel cell (MFC). Electroactive biomolecules released by the facultative anaerobes (Providencia rettgeri) under anoxic conditions have been studied for their potential role for redox balance. MALDI study reveals the presence of vitamin B9 (folate), 6-methylpterin, para-aminobenzoic acid (PABA) and pteroic acid called pterin pool. ATR-FTIR studies further confirm the presence of the aromatic ring and side chains of folate, 6-methylpterin and PABA groups. The photoluminescence spectra of the pool exhibit the maximum emission at 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm wavelengths (day 20 sample) highlighting the presence of tunable bands. The cyclic voltammetric studies indicate the active participation of pterin pool molecules in the transfer of electrons with redox potentials at - 0.2 V and - 0.4 V for p-aminobenzoate and pterin groups, respectively. In addition, it is observed that under prolonged conditions of continuous oxidative stress (> 20 days), quinonoid tetrahydrofolate is formed, leading to temporary storage of charge. The results of the present study may potentially be useful in designing effective therapeutic strategies for the management of various GI diseases by promoting or blocking folate receptors.


Assuntos
Ácido 4-Aminobenzoico , Ácido Fólico , Humanos , Pterinas , Bactérias , Intestinos
2.
Biosens Bioelectron ; 165: 112323, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729473

RESUMO

We report results of the studies relating to improved stability (40 days) of small sized microbial fuel cell (MFC) fabricated using agarose embedded paper-based proton exchange membrane. A fermentative bacterium Providencia rettgeri was isolated from rotten potato slurry and identified by 16S rRNA sequencing. The electroactivity of the bacteria was monitored via chronoamperometric and cyclic voltammetric studies using a three-electrode system which indicated the presence of bacterial redox mediator. The Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) and UV-Vis absorption spectroscopy provided the evidence that Providencia rettgeri synthesized folate (vitamin B9) during fermentation that was found to act for the first time as a redox mediator in an MFC. The paper based designed MFC fed with Providencia rettgeri yielded open circuit voltage of 787.9 mV with power and current density of 5.02 W/m3 and 11.26 A/m3, respectively when measured across 10 kΩ. The microbial re-chargeable battery comprising of an assembly of parallelly aligned four units of MFCs when connected in series (total 16 MFCs), generated 1.5 V that was used for powering a red-light emitting device (LED).


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletrodos , Providencia/genética , RNA Ribossômico 16S
3.
Biotechnol J ; 13(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29178532

RESUMO

Point-of-care (POC) diagnostic devices have been predicted to provide a boon in health care especially in the diagnosis and detection of diseases. POC devices have been found to have many advantages like a rapid and precise response, portability, low cost, and non-requirement of specialized equipment. The major objective of a POC diagnostic research is to develop a chip-based, self-containing miniaturized device that can be used to examine different analytes in complex samples. Further, the integration of microfluidics (MF) with advanced biosensor technologies is likely to result in improved POC diagnostics. This paper presents the overview of the different materials (glass, silicon, polymer, paper) and techniques for the fabrication of MF based POC devices along with their wide range of biosensor applications. Besides this, the authors have presented in brief the challenges that MF is currently facing along with possible solutions that may result in the availability of the accessible, reliable, and cost-efficient technology. The development of these devices requires the combination of developed MF components into POC devices that are user-friendly, sensitive, stable, accurate, low cost, and minimally invasive. These MF based POC devices have tremendous potential in providing improved healthcare including easy monitoring, early detection of disease, and increased personalization.


Assuntos
Técnicas Biossensoriais/tendências , Microfluídica/tendências , Patologia Molecular/tendências , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Humanos , Polímeros/química
4.
J Mater Chem B ; 3(20): 4155-4169, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262293

RESUMO

The development of transplantable cell sheets of functional keratocytes embedded within an aligned collagen type I matrix is a viable approach for constructing a bioequivalent of corneal stroma. Thermoresponsive materials based on poly(N-isopropylacrylamide) (PolyNIPA) have been utilized to recover carrier-free corneal cell sheets by inducing temperature changes. In this study, we employed direct-write assembly (DWA) to develop microperiodic parallel patterns of silk-PolyNIPA and gelatin-PolyNIPA. Semi-interpenetrating networks of PolyNIPA hybrids (with silk/gelatin) exhibited temperature-responsive nature and thereby have potential use in cell sheet engineering. Silk-PolyNIPA and gelatin-PolyNIPA hybrids demonstrated a hydrophobic surface at 37 °C (i.e. above their lower critical solution temperature) with a contact angle of 59°± 0.3° and 55°± 3°, respectively, whereas the surface roughness of silk-PolyNIPA was double that of gelatin-PolyNIPA. The reduction of temperature to 20 °C resulted in a decrease in the value of surface roughness and water contact angle for both hybrids. All four parallel patterned substrates guided corneal cell alignment along the direction of the patterns. Collagen type-I and aggrecan gene expression was higher when the cells were grown over the gelatin-PolyNIPA matrix after 3 weeks of culture when compared to silk-PolyNIPA. In addition, a significantly higher metabolic activity as well as enhanced vinculin expression of keratocytes on the gelatin-PolyNIPA matrix indicated the improved cytocompability compared to the silk, gelatin and silk-PolyNIPA matrices. Interestingly, the detachment of keratocytes cell sheet was achieved from the silk-PolyNIPA and gelatin-PolyNIPA planar films only within 10 min and 30 min, respectively, but the patterns could not yield intact sheet recovery. Hence, we conclude that while gelatin-PolyNIPA hybrids with parallel patterns fabricated using DWA will benefit from the application of cellular alignment, some optimization in the pattern parameters may be required for rapid sheet recovery from such substrates. Understanding the keratocytes responses to such hybrid biomaterials suggests viable options to develop a corneal stromal bioequivalent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...